Surface Modification of a Doped BaCeO3 to Function as an Electrolyte and as an Anode for SOFCs

نویسندگان

  • Atsuko Tomita
  • Takashi Hibino
  • Mitsuru Sano
چکیده

Dual functions of BaCe0.8Y0.2O3−a ~BCY! as an electrolyte and as an anode were improved for solid oxide fuel cell ~SOFC! applications. A porous Ce-rich phase with fluorite structure was formed with a depth of ,10 mm from the BCY surface by vaporization of BaO from the BCY surface at 1700°C. The resulting BCY surface showed enough electronic conductivity to provide electrical collection and a high electrocatalytic activity for hydrogen oxidation. A hydrogen-air fuel cell with the BCY electrolyte exhibited reasonable performances without using an anode material between 750 and 950°C. © 2005 The Electrochemical Society. @DOI: 10.1149/1.1928230# All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Process Parameters on the Apparent Defects of Tape-Cast SOFC Half-Cell

Using flawless components are important for a proper material selection and best working conditions to achieve the best performance of solid oxide fuel cells (SOFCs). Tape casting is the most used process for the fabrication of SOFC parts, especially anode and electrolyte due to its advantages regarding the other processes. In this study, the effect of slurry composition and milling time were s...

متن کامل

Chemically Stable Proton Conducting Doped BaCeO3 -No More Fear to SOFC Wastes

Development of chemically stable proton conductors for solid oxide fuel cells (SOFCs) will solve several issues, including cost associated with expensive inter-connectors, and long-term durability. Best known Y-doped BaCeO3 (YBC) proton conductors-based SOFCs suffer from chemical stability under SOFC by-products including CO2 and H2O. Here, for the first time, we report novel perovskite-type Ba...

متن کامل

Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.

An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells ...

متن کامل

Defect Chemistry and Proton Conductivity in Ba-based Perovskites

The site incorporation mechanism of M dopants into ABO3 perovskites controls the overall defect chemistry and thus their transport properties. For charge balance reasons, incorporation onto the A site would require the creation of negatively charged point defects, such as cation vacancies, whereas incorporation onto the B site is accompanied by the generation of positively charged defects, typi...

متن کامل

Chemical Precipitation of BaCeO3 – CeO2 Based Nano-ceramic Composite Oxide Materials and Their Physical Characterization

In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), novel electrolyte materials based on CeO2 and BaCeO3 are being developed in the scientific realm. In this context, we propose a new methodology for preparing the nano-ceramic composite materials such as BaCe0.9Gd0.9O3-δ – Ce0.9Gd0.9O2-δ (BCGO–CGO) and BaCe0.8Sm0.2O3-δ – Ce0.8Sm0.2O2-δ (BCSO – CSO) as possible elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005